
Programming Practices for Research in Economics

Ulrich Bergmann Matteo Courthoud Lachlan Deer

Winter 2020

E-mail: pp4rs.contact@gmail.com Web: pp4rs.github.io/2020-uzh
Dates: 27th January - 14th February Class Hours: 9:30am-12:30pm, 2pm - 5pm
Class Days: daily, Monday - Friday Class Room: To Be Announced

Motivation
Much of a researchers live in modern economic research is spent in front of a computer – be it to
analyze data or to simulate economic models.

Unfortunately, it is rare that we have been taught how to do this in a structured and efficient way.
Class exposure to programming languages is most often limited to the simple use of Stata and Matlab
to solve ‘toy’ examples designed to illustrate a theoretical result or implement a method with known
properties and ex-ante known results. These skills, like copy and pasting pieces of code repeatedly, do
not scale up in a straightforward manner to handle complex projects that make up research papers,
PhD theses or typical work in government or private business settings. As a result, young economic
researchers spend too much time wrestling with software and too little time doing economics – our
comparative advantage. Even with large investments in software wrestling and self-learned skills, we
typically have no idea how reliable or efficient our programs are.

This course is designed to improve learners’ programming abilities. It is aimed at PhD students who
expect to write their theses in a field that requires modest to heavy use of computation. Examples
include applied microeconomics, econometrics, macroeconomics, computational economics and any
field that either involves real-world data or does not generally lead to models with simple closed-form
solutions.

The course introduces students to a set of industry standard tools and programming methods that
aim to reduce time spent programming while at the same time making programs more dependable
and results reproducible. It draws extensively on basic techniques and tools that are the backbone of
modern software development and have enabled the development and maintainance of Windows or
the Google search engine. At the same time, these tools are simple enough to be used in small research
projects, too. The course shows the usefulness of these techniques and trains the student in them by
means of hands-on examples for a wide variety of economic and econometric applications.

Target Audience
This course is intended for PhD students who are transitioning from coursework to research. Next to
your economics background, we will only assume that you have written small pieces of code before,
like Stata .do-files or Matlab .m-files for problem sets in your Masters degree or first-year PhD classes.
Knowledge of a specific programming language is not required.

A large part of this course is really about tool choice. We will take care in pointing out which language
is most appropriate for which problem, and provide you with introductions to two popular choices for

1/4

mailto:pp4rs.contact@gmail.com
http://pp4rs.github.io/2020-uzh


Programming Practices for Research in Economics – Winter 2020

data- and computationally intensive computing. We also introduce a tool kit designed to improve the
replicability of your code. The programming languages and tools introduced in the course are not the
only choices available but some knowledge of these languages and best practices will make picking
up others on your own relatively easy by providing a solid basic training.

Course Objectives
This course has two closely intertwined objectives:

1. Enhancing students’ programming efficiency.
2. Providing the tools to make data analysis and computation reproducible.

Learning objectives for specific modules will be provided within the Course Notes.

Evaluation
The course is evaluated on a pass/fail basis. There will be a final assignment that is due four weeks
after the course concludes. This assignment will count 100%. More information will be provided before
the course begins.

Rules of the Game
The class is designed to be ‘hands-on’ in the sense that you will be programming a lot of things during
the class. We strongly believe the only way to learn programming is to do programming. Please bring
your laptop with you to each session and install the required software before the course begins. Try to
complete each activity we do in class and be prepared to ask and answer questions during class. Slides
or notes will be made available at the beginning of each day, codes that solve exercises will be posted
during or after the session.

Office Hours
Due to the intensive nature of the course, we have decided to not schedule office hours. Feel free to
talk to us before and after each session throughout the course and ask many questions during each
session.

Times and Locations
• Dates: Daily from 27th January until 14th February (excluding weekends)
• Morning Session: 9.30 - 12.30
• Afternoon Session: 14.00 - 17.00
• Location: TBA

2/4



Programming Practices for Research in Economics – Winter 2020

Preliminary Programme
The following is a preliminary programme. It may be updated prior to the beginning of the course,
and updated schedule will be forwarded before the course begins.

Monday Tuesday Wednesday Thursday Friday

Week 1:
AM Terminal* Basic Python Basic Python Python: Pandas Python: Metrics
PM Terminal* Basic Python Python: Numpy Python: Plotting Python: SciPy
Week 2:
AM Webscraping Python Project Version Control* Version Control* R: Basics*
PM Adv. Python Python Project Version Control* R: Basics* R: Data Analy.*
Week 3:
AM R: Plotting* R: Econometrics R Project Build Tools* Build Tools
PM R: Econometrics* Advanced R R Project Build Tools* Build Tools

Students are expected to have completed the Installation Guide and successfully installed all required
software for the course prior to the first day.

1st Year Students vs. 2nd Year Students

In this edition we have two distinct groups of students:

• 1st year PhD Students, who have not taken any existing PP4RS courses
– We expect you to attend all sessions

• 2nd year PhD Students, who have taken the PP4RS: Foundations course in 2019
– Can skip sessions marked with a *, but can attend as a refresher
– We expect you to be fluent in these topics

The exact topics covered in each session market with a * might differ slightly from the 2019 version as
we have more time and our thoughts on what is important to cover may have evolved over time.

Brief Topic Outlines

Terminal

The Unix shell has been around longer than most of its users have been alive. It has survived so long
because it’s a power tool that allows people to do complex things with just a few keystrokes. More
importantly, it helps to combine existing programs in new ways and automate repetitive tasks to avoid
typing the same things over and over again. Use of the shell is fundamental to using a wide range of
other powerful tools and computing resources (including “high-performance computing” and cloud
computing resources). These lessons will start you on a path towards using these resources effectively.

Python Programming Language

Python is one of the most popular and fastest growing programming language because of its ease of
use and power. It has also become the most used statistical software in the recent years. These modules
have two distinct goals: (1) introduce basic programming syntax, and (2) introducing specific packages
that are useful for computational analysis and data-driven research. We introduce basic programming
syntax using the Python language because of its simplicity to get started for novice users. The in-
troductions to specific packages are designed to highlight how to solve problems that are typically
encountered by economics and business researchers – such as solving models using computational

3/4

https://pp4rs.github.io/installation-guide/


Programming Practices for Research in Economics – Winter 2020

techniques, the automated collection of data from websites or applied microeconometric modelling,
using the Python language. We emphasize best practice technqiues as we progress through the mate-
rial.

Version Control

Version control is the lab notebook of the digital world: it’s what professionals use to keep track of
what they’ve done and to collaborate with other people. Every large software development project
relies on it, and programmers use it for their small jobs as well. And it isn’t just for software: books,
papers, small data sets, and anything that changes over time or needs to be shared can and should
be stored in a version control system. Teams are not the only ones to benefit from version control:
lone researchers can benefit immensely. Keeping a record of what was changed, when, and why is
extremely useful for all researchers if they ever need to come back to the project later on (e.g., a year
later, when memory has faded or a former version of a file has been overwritten).

The R Programming Language

The goal of this lesson is to teach novice programmers to write modular code and best practices for
using R for data analysis. R is free, computationally fast, and has a wide array of third-party pack-
ages for almost all imaginable statistical applications. It is the second most used statistical software
today and the most popular one among academic researchers. The emphasis of these materials is to
give attendees a strong foundation in the fundamentals of R and to teach best practices for scientific
computing: breaking down analyses into modular units, task automation, and encapsulation. This
workshop will focus on teaching the fundamentals of the programming language R, data wrangling,
data visualization and regression techniques common to applied microeconomics researchers.

Build Tools

Build Tools can run commands to read files, process these files in some way, and write out the pro-
cessed files. For example, we can:

• Run analysis scripts on raw data files to get data files that summarize the raw data;
• Run visualization scripts on data files to produce plots and statistical tables; and to
• Parse and combine text files, tables and plots to create papers.

Most importantly, Build Tools track the dependencies between the files they create and the files used
to create them. This allows build tools to only recompute necessary steps after a data or code file has
been changed – without the need to run the whole project from the beginning.

4/4


	Motivation
	Target Audience
	Course Objectives
	Evaluation
	Rules of the Game
	Office Hours
	Times and Locations
	Preliminary Programme
	1st Year Students vs. 2nd Year Students
	Brief Topic Outlines
	Terminal
	Python Programming Language
	Version Control
	The R Programming Language
	Build Tools



