Chapter 8 Linear Models with Fixed Effects

8.1 Libraries

library(readxl)         # read excel files
library(tibble)         # cuter dataframes
library(dplyr)          # data manipulation
library(ggplot2)        # graphs
library(lfe)            # fixed effects models
library(stargazer)      # nice tables
library(ggrepel)        # better graph labeling
library(lmtest)         # for coeftest function
library(multiwayvcov)   # (multiway) clustered standard errors
library(AER)            # instrumental variables
library(ivpack)         # robust standard errors for ivreg

8.2 Review of Plotting: Recreating Figure 1

# read data for first figure
ajry_f1 = read_xls("data/ajry.xls", 
                   sheet = "F1") %>% 
  rename(log_gdp_pc = lrgdpch, 
         freedom_house = fhpolrigaug)

ggplot(ajry_f1, aes(x = log_gdp_pc, y = freedom_house)) +
  geom_point(size = 0.5) +
  geom_text(aes(label = code), size = 2, hjust = 0, vjust = 0) +
  geom_smooth(method = "lm", color = "black", size = 0.5, alpha = 0.2) +
  labs(x = "Log GDP per Capita (1990-1999)",
       y = "FH Measure of Democracy (1990-1999)") +
  theme_bw()
## `geom_smooth()` using formula 'y ~ x'

That is not bad, but we cannot read half of the label. Let’s try again, with the ggrepel package.

ggplot(ajry_f1, aes(x = log_gdp_pc, y = freedom_house)) +
  geom_point(size = 0.5) +
  geom_text_repel(aes(label = code), size = 2) +
  geom_smooth(method = "lm", color = "black", size = 0.5, alpha = 0.2) +
  labs(x = "Log GDP per Capita (1990-1999)",
       y = "FH Measure of Democracy (1990-1999)") +
  theme_bw()
## `geom_smooth()` using formula 'y ~ x'
## Warning: ggrepel: 24 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

rm(ajry_f1)

8.3 Review of Plotting: Recreating Figure 2

# read data for second figure
ajry_f2 = read_xls("data/ajry.xls", 
                   sheet = "F2") %>% 
  rename(freedom_house_change = s5fhpolrigaug,
         log_gdp_pc_change = s5lrgdpch)


ggplot(ajry_f2, aes(x = log_gdp_pc_change, y = freedom_house_change)) +
  geom_point(size = 0.5) + 
  geom_smooth(method = "lm", size = 0.5, alpha = 0.2) +
  geom_text_repel(aes(label = code), size = 2) +
  labs(x = "Change in GDP per Capita (1970-1995)",
       y = "Change in FH Measure of Democracy (1970-1995)") + 
  theme_bw()
## `geom_smooth()` using formula 'y ~ x'
## Warning: ggrepel: 15 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

8.4 Loading the data for estimation

ajry_df = read_xls("data/ajry.xls", 
                   sheet = 2) %>% 
  arrange(code_numeric, year_numeric) %>% 
  rename(log_gdp_pc = lrgdpch,
         freedom_house = fhpolrigaug)

# generate lagged variables
ajry_df = ajry_df %>% 
  group_by(code_numeric) %>% 
  mutate(lag_log_gdp_pc = lag(log_gdp_pc, order_by = year_numeric),
         lag_freedom_house = lag(freedom_house, order_by = year_numeric),
         lag2_nsave = lag(nsave, 2, order_by = year_numeric),
         lag_worldincome = lag(worldincome, order_by = year_numeric)) %>% 
  filter(sample == 1)

8.5 Pooled OLS with Time Effects

# pooled ols with lm 
pooled_est = lm(freedom_house ~ -1 + lag_freedom_house + lag_log_gdp_pc + 
             factor(year_numeric), data = ajry_df)

# standard errors clustered by country
vcov_country <- cluster.vcov(pooled_est, ajry_df$code_numeric)
coeftest(pooled_est, vcov_country)
## 
## t test of coefficients:
## 
##                          Estimate Std. Error t value  Pr(>|t|)    
## lag_freedom_house       0.7063698  0.0354523 19.9245 < 2.2e-16 ***
## lag_log_gdp_pc          0.0723185  0.0099233  7.2878 6.705e-13 ***
## factor(year_numeric)33 -0.3468646  0.0617091 -5.6210 2.507e-08 ***
## factor(year_numeric)34 -0.4297435  0.0612981 -7.0107 4.543e-12 ***
## factor(year_numeric)35 -0.5462314  0.0669176 -8.1628 1.054e-15 ***
## factor(year_numeric)36 -0.4586181  0.0675307 -6.7913 1.976e-11 ***
## factor(year_numeric)37 -0.3969802  0.0689060 -5.7612 1.133e-08 ***
## factor(year_numeric)38 -0.4194864  0.0690369 -6.0763 1.789e-09 ***
## factor(year_numeric)39 -0.3994897  0.0650135 -6.1447 1.185e-09 ***
## factor(year_numeric)40 -0.3791493  0.0708188 -5.3538 1.084e-07 ***
## factor(year_numeric)41 -0.4031277  0.0653108 -6.1724 1.001e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.6 Fixed Effects with the lm function

# pooled ols with lm 
fe_est = lm(freedom_house ~ -1 + lag_freedom_house + lag_log_gdp_pc + 
             factor(year_numeric) + factor(code_numeric), data = ajry_df)

# standard errors clustered by country
vcov_country <- cluster.vcov(fe_est, factor(ajry_df$code_numeric))
coeftest(fe_est, vcov_country)
## 
## t test of coefficients:
## 
##                            Estimate  Std. Error t value  Pr(>|t|)    
## lag_freedom_house        3.7863e-01  5.0931e-02  7.4341 2.758e-13 ***
## lag_log_gdp_pc           1.0415e-02  3.4548e-02  0.3015 0.7631419    
## factor(year_numeric)33  -4.1689e-02  2.3873e-01 -0.1746 0.8614205    
## factor(year_numeric)34  -7.1530e-02  2.4413e-01 -0.2930 0.7695972    
## factor(year_numeric)35  -1.7531e-01  2.5152e-01 -0.6970 0.4859906    
## factor(year_numeric)36  -1.3071e-01  2.5226e-01 -0.5182 0.6044889    
## factor(year_numeric)37  -7.0236e-02  2.5313e-01 -0.2775 0.7814963    
## factor(year_numeric)38  -7.5191e-02  2.5788e-01 -0.2916 0.7706850    
## factor(year_numeric)39  -4.0343e-02  2.5574e-01 -0.1578 0.8746916    
## factor(year_numeric)40   6.2191e-05  2.6625e-01  0.0002 0.9998137    
## factor(year_numeric)41   2.8773e-03  2.6406e-01  0.0109 0.9913089    
## factor(code_numeric)4    1.6193e-01  2.9881e-02  5.4192 7.968e-08 ***
## factor(code_numeric)6    4.1576e-01  6.6405e-02  6.2610 6.292e-10 ***
## factor(code_numeric)7    2.2724e-01  2.0616e-02 11.0225 < 2.2e-16 ***
## factor(code_numeric)8    2.1783e-01  7.0593e-02  3.0858 0.0021015 ** 
## factor(code_numeric)9    5.8800e-01  9.3824e-02  6.2670 6.066e-10 ***
## factor(code_numeric)10   5.9152e-01  8.8594e-02  6.6767 4.620e-11 ***
## factor(code_numeric)11   2.0658e-02  1.2961e-02  1.5938 0.1113794    
## factor(code_numeric)14   8.2058e-03  2.8410e-02  0.2888 0.7727810    
## factor(code_numeric)15   5.8962e-01  8.9159e-02  6.6132 6.952e-11 ***
## factor(code_numeric)16   1.7273e-01  1.6391e-02 10.5381 < 2.2e-16 ***
## factor(code_numeric)17   1.7885e-01  2.6830e-02  6.6660 4.952e-11 ***
## factor(code_numeric)18   3.4501e-01  2.2238e-02 15.5145 < 2.2e-16 ***
## factor(code_numeric)19   4.2308e-01  5.5307e-02  7.6498 5.898e-14 ***
## factor(code_numeric)23  -5.2164e-02  3.7753e-02 -1.3817 0.1674502    
## factor(code_numeric)24   5.4440e-01  5.9107e-02  9.2103 < 2.2e-16 ***
## factor(code_numeric)25   3.5215e-01  2.8596e-02 12.3148 < 2.2e-16 ***
## factor(code_numeric)26   3.7473e-01  4.7202e-02  7.9388 7.051e-15 ***
## factor(code_numeric)27   5.7775e-01  7.8779e-02  7.3338 5.580e-13 ***
## factor(code_numeric)30   5.1360e-01  4.5905e-02 11.1884 < 2.2e-16 ***
## factor(code_numeric)31   1.3606e-01  9.7552e-03 13.9473 < 2.2e-16 ***
## factor(code_numeric)32   5.8759e-01  9.5013e-02  6.1843 1.003e-09 ***
## factor(code_numeric)33   5.8564e-01  1.0193e-01  5.7454 1.312e-08 ***
## factor(code_numeric)34   3.7967e-01  5.0385e-02  7.5354 1.343e-13 ***
## factor(code_numeric)35   2.4077e-02  1.2766e-02  1.8860 0.0596704 .  
## factor(code_numeric)36   1.0009e-01  1.4282e-02  7.0081 5.205e-12 ***
## factor(code_numeric)37   6.4791e-02  1.3045e-02  4.9668 8.355e-07 ***
## factor(code_numeric)38   9.6525e-02  1.3631e-02  7.0813 3.176e-12 ***
## factor(code_numeric)39   4.1831e-01  4.5697e-02  9.1539 < 2.2e-16 ***
## factor(code_numeric)40   1.5144e-01  1.6432e-02  9.2163 < 2.2e-16 ***
## factor(code_numeric)41   3.3822e-01  1.8823e-02 17.9680 < 2.2e-16 ***
## factor(code_numeric)42   5.9210e-01  5.8706e-02 10.0859 < 2.2e-16 ***
## factor(code_numeric)43  -9.9454e-02  4.0976e-02 -2.4271 0.0154442 *  
## factor(code_numeric)44   5.1843e-01  6.4375e-02  8.0533 2.986e-15 ***
## factor(code_numeric)45   5.1991e-01  7.8405e-02  6.6311 6.199e-11 ***
## factor(code_numeric)47   5.1661e-01  9.2338e-02  5.5948 3.052e-08 ***
## factor(code_numeric)51   5.2482e-01  5.3926e-02  9.7324 < 2.2e-16 ***
## factor(code_numeric)52   5.8748e-01  9.5341e-02  6.1619 1.148e-09 ***
## factor(code_numeric)53   4.0917e-01  2.9577e-02 13.8340 < 2.2e-16 ***
## factor(code_numeric)54   9.5593e-02  3.3655e-02  2.8404 0.0046223 ** 
## factor(code_numeric)55   3.4636e-01  3.5097e-02  9.8687 < 2.2e-16 ***
## factor(code_numeric)56   1.6095e-01  1.7164e-02  9.3770 < 2.2e-16 ***
## factor(code_numeric)58   4.0409e-01  6.6964e-02  6.0345 2.457e-09 ***
## factor(code_numeric)59   5.8866e-01  5.8149e-02 10.1233 < 2.2e-16 ***
## factor(code_numeric)60   7.5846e-02  5.0078e-02  1.5146 0.1302880    
## factor(code_numeric)61   7.6009e-02  3.1685e-02  2.3989 0.0166770 *  
## factor(code_numeric)63   5.3987e-01  8.5772e-02  6.2943 5.133e-10 ***
## factor(code_numeric)64   2.6809e-01  4.5531e-02  5.8881 5.788e-09 ***
## factor(code_numeric)65   5.7704e-01  8.8222e-02  6.5408 1.103e-10 ***
## factor(code_numeric)66   1.4146e-01  5.2368e-02  2.7013 0.0070550 ** 
## factor(code_numeric)67   5.8811e-01  8.9490e-02  6.5717 9.059e-11 ***
## factor(code_numeric)70   2.2235e-01  1.7367e-02 12.8028 < 2.2e-16 ***
## factor(code_numeric)71   2.1795e-02  1.4917e-02  1.4611 0.1443897    
## factor(code_numeric)72   2.5364e-01  3.2729e-02  7.7499 2.847e-14 ***
## factor(code_numeric)73   2.0237e-01  3.8840e-02  5.2104 2.410e-07 ***
## factor(code_numeric)74  -2.0772e-02  7.9611e-03 -2.6092 0.0092480 ** 
## factor(code_numeric)75   4.8964e-01  6.9596e-02  7.0354 4.330e-12 ***
## factor(code_numeric)76   5.7443e-01  4.4052e-02 13.0398 < 2.2e-16 ***
## factor(code_numeric)77   3.4235e-01  3.4777e-02  9.8441 < 2.2e-16 ***
## factor(code_numeric)78   3.1616e-01  2.8584e-02 11.0605 < 2.2e-16 ***
## factor(code_numeric)79   3.4532e-01  2.2451e-02 15.3812 < 2.2e-16 ***
## factor(code_numeric)80   5.4910e-01  4.7291e-02 11.6112 < 2.2e-16 ***
## factor(code_numeric)81   1.2864e-01  1.9181e-02  6.7069 3.802e-11 ***
## factor(code_numeric)82   3.7392e-01  5.6692e-02  6.5957 7.775e-11 ***
## factor(code_numeric)83   1.9096e-01  9.2225e-03 20.7058 < 2.2e-16 ***
## factor(code_numeric)84   4.9470e-01  3.8115e-02 12.9792 < 2.2e-16 ***
## factor(code_numeric)85   5.8847e-01  7.6803e-02  7.6621 5.397e-14 ***
## factor(code_numeric)86   1.4631e-01  3.3904e-02  4.3155 1.796e-05 ***
## factor(code_numeric)88   5.8913e-01  9.0561e-02  6.5054 1.380e-10 ***
## factor(code_numeric)89   5.2999e-01  7.6612e-02  6.9179 9.518e-12 ***
## factor(code_numeric)90   5.8692e-01  8.6063e-02  6.8197 1.822e-11 ***
## factor(code_numeric)91   5.2817e-01  5.0711e-02 10.4152 < 2.2e-16 ***
## factor(code_numeric)92   1.8031e-01  2.4815e-02  7.2661 8.941e-13 ***
## factor(code_numeric)93   5.6819e-01  8.2830e-02  6.8597 1.399e-11 ***
## factor(code_numeric)94   1.0524e-02  3.8074e-02  0.2764 0.7823069    
## factor(code_numeric)95   1.0774e-01  1.8093e-02  5.9548 3.926e-09 ***
## factor(code_numeric)96  -1.0717e-01  2.1725e-02 -4.9330 9.887e-07 ***
## factor(code_numeric)97   2.6984e-02  2.2666e-02  1.1905 0.2341998    
## factor(code_numeric)99   5.4006e-01  6.9106e-02  7.8149 1.767e-14 ***
## factor(code_numeric)101  3.3742e-01  4.0222e-02  8.3889 2.270e-16 ***
## factor(code_numeric)104  1.5938e-02  2.4818e-02  0.6422 0.5209229    
## factor(code_numeric)107  5.7775e-01  5.4977e-02 10.5088 < 2.2e-16 ***
## factor(code_numeric)109  4.3280e-01  3.5299e-02 12.2611 < 2.2e-16 ***
## factor(code_numeric)110  2.3431e-01  1.6531e-02 14.1739 < 2.2e-16 ***
## factor(code_numeric)111  5.2749e-01  5.8978e-02  8.9440 < 2.2e-16 ***
## factor(code_numeric)112  5.6232e-01  9.6567e-02  5.8232 8.417e-09 ***
## factor(code_numeric)113  5.9103e-01  5.2080e-02 11.3484 < 2.2e-16 ***
## factor(code_numeric)114  2.2973e-01  2.3776e-02  9.6620 < 2.2e-16 ***
## factor(code_numeric)115  5.6017e-01  2.0967e-02 26.7174 < 2.2e-16 ***
## factor(code_numeric)116  3.1675e-01  2.6359e-02 12.0168 < 2.2e-16 ***
## factor(code_numeric)118  3.3673e-01  5.3967e-02  6.2395 7.173e-10 ***
## factor(code_numeric)119  2.2015e-01  3.4675e-02  6.3490 3.663e-10 ***
## factor(code_numeric)120  1.8539e-01  2.3593e-02  7.8579 1.286e-14 ***
## factor(code_numeric)121  5.2026e-01  7.7427e-02  6.7194 3.506e-11 ***
## factor(code_numeric)125  2.0935e-01  2.0658e-02 10.1339 < 2.2e-16 ***
## factor(code_numeric)126  6.7562e-02  8.9508e-03  7.5482 1.225e-13 ***
## factor(code_numeric)127  5.3418e-01  6.1703e-02  8.6573 < 2.2e-16 ***
## factor(code_numeric)128  1.7093e-01  3.7344e-02  4.5771 5.479e-06 ***
## factor(code_numeric)129  3.3221e-01  4.5143e-02  7.3590 4.679e-13 ***
## factor(code_numeric)130  4.2931e-01  4.5681e-02  9.3980 < 2.2e-16 ***
## factor(code_numeric)131  1.2193e-01  1.3065e-02  9.3325 < 2.2e-16 ***
## factor(code_numeric)132  1.7334e-01  1.9743e-02  8.7801 < 2.2e-16 ***
## factor(code_numeric)133  2.9120e-01  3.1504e-02  9.2434 < 2.2e-16 ***
## factor(code_numeric)134  5.8899e-01  9.0980e-02  6.4738 1.683e-10 ***
## factor(code_numeric)135  5.8920e-01  9.0375e-02  6.5195 1.262e-10 ***
## factor(code_numeric)136  3.0599e-01  2.5966e-02 11.7840 < 2.2e-16 ***
## factor(code_numeric)137  5.8882e-01  9.1452e-02  6.4386 2.099e-10 ***
## factor(code_numeric)140  1.7623e-01  1.8497e-02  9.5275 < 2.2e-16 ***
## factor(code_numeric)141  4.8289e-01  2.9461e-02 16.3908 < 2.2e-16 ***
## factor(code_numeric)142  3.0421e-01  3.9037e-02  7.7930 2.075e-14 ***
## factor(code_numeric)144  3.3488e-01  4.3930e-02  7.6230 7.156e-14 ***
## factor(code_numeric)145  3.8707e-01  3.4541e-02 11.2061 < 2.2e-16 ***
## factor(code_numeric)147  4.8284e-01  4.3339e-02 11.1410 < 2.2e-16 ***
## factor(code_numeric)148  4.8110e-01  5.1535e-02  9.3354 < 2.2e-16 ***
## factor(code_numeric)150  4.3434e-01  5.9722e-02  7.2727 8.541e-13 ***
## factor(code_numeric)151  2.4963e-01  3.4267e-02  7.2846 7.862e-13 ***
## factor(code_numeric)153  1.5059e-01  1.9464e-02  7.7367 3.136e-14 ***
## factor(code_numeric)154 -1.4431e-02  5.2231e-02 -0.2763 0.7823904    
## factor(code_numeric)155  2.7024e-02  2.1621e-02  1.2499 0.2117055    
## factor(code_numeric)160  3.1820e-01  1.8678e-02 17.0366 < 2.2e-16 ***
## factor(code_numeric)162  1.8732e-01  6.4579e-02  2.9007 0.0038276 ** 
## factor(code_numeric)165  1.5966e-01  1.6637e-02  9.5967 < 2.2e-16 ***
## factor(code_numeric)166  4.1406e-01  4.3556e-02  9.5064 < 2.2e-16 ***
## factor(code_numeric)168  3.2435e-01  2.1140e-02 15.3429 < 2.2e-16 ***
## factor(code_numeric)170  5.8626e-01  6.4695e-02  9.0620 < 2.2e-16 ***
## factor(code_numeric)171  5.2006e-01  7.7996e-02  6.6677 4.897e-11 ***
## factor(code_numeric)172  5.7662e-01  9.2971e-02  6.2021 9.002e-10 ***
## factor(code_numeric)174  2.4048e-01  5.2931e-02  4.5433 6.411e-06 ***
## factor(code_numeric)175  3.7597e-02  1.6757e-02  2.2437 0.0251300 *  
## factor(code_numeric)176  6.6391e-02  1.4184e-02  4.6806 3.369e-06 ***
## factor(code_numeric)177  6.3735e-02  1.3082e-02  4.8721 1.336e-06 ***
## factor(code_numeric)178  3.5007e-01  2.5720e-02 13.6110 < 2.2e-16 ***
## factor(code_numeric)182  5.3754e-01  7.0228e-02  7.6543 5.710e-14 ***
## factor(code_numeric)183  9.1527e-02  3.1195e-02  2.9340 0.0034440 ** 
## factor(code_numeric)184  3.5105e-01  4.4278e-02  7.9284 7.617e-15 ***
## factor(code_numeric)186  3.1766e-01  4.4714e-02  7.1043 2.715e-12 ***
## factor(code_numeric)187  1.4516e-01  3.9787e-02  3.6483 0.0002814 ***
## factor(code_numeric)188  9.2944e-02  3.5594e-02  2.6112 0.0091940 ** 
## factor(code_numeric)189  1.5632e-01  4.1266e-02  3.7881 0.0001634 ***
## factor(code_numeric)191  4.5847e-01  6.3347e-02  7.2374 1.090e-12 ***
## factor(code_numeric)192  5.7786e-01  9.9262e-02  5.8216 8.493e-09 ***
## factor(code_numeric)194 -8.4544e-02  1.7685e-02 -4.7806 2.086e-06 ***
## factor(code_numeric)195  4.8397e-01  5.2186e-02  9.2739 < 2.2e-16 ***
## factor(code_numeric)196  5.0183e-01  6.8964e-02  7.2767 8.304e-13 ***
## factor(code_numeric)197 -7.6516e-02  2.0959e-02 -3.6507 0.0002788 ***
## factor(code_numeric)203  1.6546e-01  2.9344e-02  5.6385 2.393e-08 ***
## factor(code_numeric)208  3.7521e-01  5.7867e-02  6.4840 1.578e-10 ***
## factor(code_numeric)209  3.3121e-02  2.7563e-02  1.2016 0.2298658    
## factor(code_numeric)210  1.9998e-01  2.0983e-02  9.5305 < 2.2e-16 ***
## factor(code_numeric)211  1.7752e-01  2.0392e-02  8.7054 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.7 Pooled OLS and FE with the lfe package

# pooled OLS
felm1 = felm(freedom_house ~ lag_freedom_house + lag_log_gdp_pc | year_numeric | 0 | code_numeric, 
             data = ajry_df)

# FE
felm2 = felm(freedom_house ~ lag_freedom_house + lag_log_gdp_pc | year_numeric + code_numeric | 0 | 
               code_numeric, data = ajry_df)
stargazer(felm1, felm2, type = 'text')
## 
## =====================================================
##                            Dependent variable:       
##                     ---------------------------------
##                               freedom_house          
##                           (1)              (2)       
## -----------------------------------------------------
## lag_freedom_house       0.706***         0.379***    
##                         (0.035)          (0.046)     
##                                                      
## lag_log_gdp_pc          0.072***          0.010      
##                         (0.010)          (0.032)     
##                                                      
## -----------------------------------------------------
## Observations              945              945       
## R2                       0.725            0.796      
## Adjusted R2              0.722            0.755      
## Residual Std. Error 0.192 (df = 934) 0.180 (df = 785)
## =====================================================
## Note:                     *p<0.1; **p<0.05; ***p<0.01

Notice that this command automatically spits out cluster-robust standard errors and passes them to stargazer. That is absolutely fantastic, right? For robust standard errors we have to work a bit.

# function to recover robust standard errors 
get_felm_robust_se = function(felm_result) {
  felm_summary = summary(felm_result, robust = TRUE)
  robust_se = felm_summary$coefficients[, 2]
  }

8.8 Review of IV

# Second Stage with ivreg, normal standard errors
iv_sav = ivreg(freedom_house ~ lag_freedom_house + lag_log_gdp_pc + factor(year_numeric) + 
        factor(code_numeric) | lag_freedom_house + lag2_nsave + factor(year_numeric) + 
        factor(code_numeric), data = ajry_df)
summary(iv_sav) 
## 
## Call:
## ivreg(formula = freedom_house ~ lag_freedom_house + lag_log_gdp_pc + 
##     factor(year_numeric) + factor(code_numeric) | lag_freedom_house + 
##     lag2_nsave + factor(year_numeric) + factor(code_numeric), 
##     data = ajry_df)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.677516 -0.076065 -0.002338  0.085441  0.599790 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.169672   0.488436   0.347 0.728406    
## lag_freedom_house        0.362910   0.035827  10.129  < 2e-16 ***
## lag_log_gdp_pc          -0.020493   0.070796  -0.289 0.772309    
## factor(year_numeric)34  -0.030477   0.038146  -0.799 0.424565    
## factor(year_numeric)35  -0.123590   0.041347  -2.989 0.002890 ** 
## factor(year_numeric)36  -0.073594   0.047776  -1.540 0.123887    
## factor(year_numeric)37  -0.007184   0.053669  -0.134 0.893557    
## factor(year_numeric)38  -0.017182   0.058162  -0.295 0.767751    
## factor(year_numeric)39   0.021396   0.058867   0.363 0.716364    
## factor(year_numeric)40   0.064340   0.062995   1.021 0.307424    
## factor(year_numeric)41   0.069922   0.065121   1.074 0.283295    
## factor(code_numeric)6    0.479203   0.158838   3.017 0.002640 ** 
## factor(code_numeric)8    0.284433   0.183283   1.552 0.121115    
## factor(code_numeric)9    0.675419   0.189699   3.560 0.000394 ***
## factor(code_numeric)10   0.673215   0.180377   3.732 0.000204 ***
## factor(code_numeric)14  -0.015853   0.120024  -0.132 0.894954    
## factor(code_numeric)15   0.672222   0.180646   3.721 0.000213 ***
## factor(code_numeric)16   0.179565   0.110810   1.620 0.105550    
## factor(code_numeric)17   0.179865   0.120176   1.497 0.134898    
## factor(code_numeric)18   0.336736   0.119985   2.806 0.005139 ** 
## factor(code_numeric)23  -0.017314   0.211064  -0.082 0.934645    
## factor(code_numeric)24   0.591526   0.150815   3.922 9.58e-05 ***
## factor(code_numeric)25   0.377306   0.109020   3.461 0.000569 ***
## factor(code_numeric)26   0.417357   0.124468   3.353 0.000839 ***
## factor(code_numeric)27   0.646461   0.162333   3.982 7.49e-05 ***
## factor(code_numeric)30   0.545156   0.118985   4.582 5.40e-06 ***
## factor(code_numeric)31   0.145409   0.106096   1.371 0.170928    
## factor(code_numeric)32   0.676225   0.192015   3.522 0.000455 ***
## factor(code_numeric)33   0.681284   0.205619   3.313 0.000966 ***
## factor(code_numeric)34   0.392207   0.131573   2.981 0.002967 ** 
## factor(code_numeric)35   0.015660   0.105347   0.149 0.881872    
## factor(code_numeric)36   0.091454   0.108214   0.845 0.398315    
## factor(code_numeric)37   0.042301   0.106907   0.396 0.692453    
## factor(code_numeric)38   0.079314   0.106817   0.743 0.458002    
## factor(code_numeric)39   0.456811   0.120229   3.800 0.000157 ***
## factor(code_numeric)40   0.161014   0.115192   1.398 0.162592    
## factor(code_numeric)41   0.350108   0.115632   3.028 0.002548 ** 
## factor(code_numeric)42   0.640405   0.126330   5.069 5.04e-07 ***
## factor(code_numeric)43  -0.059135   0.171053  -0.346 0.729657    
## factor(code_numeric)44   0.576541   0.144363   3.994 7.15e-05 ***
## factor(code_numeric)45   0.591476   0.236263   2.503 0.012511 *  
## factor(code_numeric)47   0.603525   0.220770   2.734 0.006410 ** 
## factor(code_numeric)51   0.577474   0.152402   3.789 0.000163 ***
## factor(code_numeric)52   0.676447   0.192654   3.511 0.000473 ***
## factor(code_numeric)53   0.473624   0.109042   4.343 1.60e-05 ***
## factor(code_numeric)54   0.126940   0.125086   1.015 0.310521    
## factor(code_numeric)55   0.353559   0.113777   3.107 0.001958 ** 
## factor(code_numeric)56   0.176670   0.104458   1.691 0.091196 .  
## factor(code_numeric)58   0.468235   0.161766   2.895 0.003908 ** 
## factor(code_numeric)61   0.051251   0.122568   0.418 0.675965    
## factor(code_numeric)63   0.619959   0.178506   3.473 0.000544 ***
## factor(code_numeric)64   0.306104   0.126789   2.414 0.016006 *  
## factor(code_numeric)65   0.658951   0.180060   3.660 0.000270 ***
## factor(code_numeric)66   0.183726   0.150693   1.219 0.223152    
## factor(code_numeric)67   0.671077   0.181409   3.699 0.000232 ***
## factor(code_numeric)70   0.216119   0.106751   2.025 0.043273 *  
## factor(code_numeric)71   0.034925   0.110002   0.317 0.750955    
## factor(code_numeric)72   0.252102   0.115699   2.179 0.029648 *  
## factor(code_numeric)73   0.171593   0.139591   1.229 0.219364    
## factor(code_numeric)74  -0.014710   0.110618  -0.133 0.894247    
## factor(code_numeric)75   0.551922   0.159201   3.467 0.000557 ***
## factor(code_numeric)76   0.572273   0.144944   3.948 8.62e-05 ***
## factor(code_numeric)77   0.373408   0.113488   3.290 0.001048 ** 
## factor(code_numeric)78   0.334633   0.112832   2.966 0.003116 ** 
## factor(code_numeric)79   0.361195   0.103505   3.490 0.000512 ***
## factor(code_numeric)81   0.114460   0.116050   0.986 0.324307    
## factor(code_numeric)82   0.474590   0.156578   3.031 0.002521 ** 
## factor(code_numeric)83   0.219953   0.106311   2.069 0.038894 *  
## factor(code_numeric)84   0.499985   0.106987   4.673 3.52e-06 ***
## factor(code_numeric)85   0.657962   0.157570   4.176 3.32e-05 ***
## factor(code_numeric)86   0.173215   0.123747   1.400 0.162005    
## factor(code_numeric)88   0.673188   0.183360   3.671 0.000258 ***
## factor(code_numeric)89   0.600827   0.162467   3.698 0.000233 ***
## factor(code_numeric)90   0.666378   0.175112   3.805 0.000153 ***
## factor(code_numeric)91   0.565682   0.120193   4.706 3.00e-06 ***
## factor(code_numeric)92   0.212268   0.113589   1.869 0.062051 .  
## factor(code_numeric)93   0.644689   0.170697   3.777 0.000171 ***
## factor(code_numeric)95   0.098251   0.110554   0.889 0.374440    
## factor(code_numeric)99   0.600061   0.165771   3.620 0.000315 ***
## factor(code_numeric)101  0.388717   0.124714   3.117 0.001898 ** 
## factor(code_numeric)104  0.039985   0.208015   0.192 0.847620    
## factor(code_numeric)107  0.590006   0.148608   3.970 7.87e-05 ***
## factor(code_numeric)109  0.450721   0.104293   4.322 1.76e-05 ***
## factor(code_numeric)110  0.226397   0.113210   2.000 0.045884 *  
## factor(code_numeric)112  0.652927   0.197087   3.313 0.000968 ***
## factor(code_numeric)113  0.636184   0.212508   2.994 0.002847 ** 
## factor(code_numeric)114  0.250611   0.108748   2.304 0.021468 *  
## factor(code_numeric)116  0.285630   0.112913   2.530 0.011622 *  
## factor(code_numeric)118  0.387727   0.140368   2.762 0.005882 ** 
## factor(code_numeric)120  0.168198   0.117269   1.434 0.151907    
## factor(code_numeric)125  0.194793   0.121680   1.601 0.109829    
## factor(code_numeric)126  0.029631   0.106110   0.279 0.780134    
## factor(code_numeric)127  0.587099   0.142284   4.126 4.10e-05 ***
## factor(code_numeric)128  0.141620   0.129898   1.090 0.275959    
## factor(code_numeric)129  0.372208   0.123189   3.021 0.002602 ** 
## factor(code_numeric)130  0.465344   0.161116   2.888 0.003986 ** 
## factor(code_numeric)131  0.138069   0.109420   1.262 0.207407    
## factor(code_numeric)132  0.166727   0.107667   1.549 0.121916    
## factor(code_numeric)133  0.320197   0.112626   2.843 0.004591 ** 
## factor(code_numeric)134  0.673476   0.184172   3.657 0.000273 ***
## factor(code_numeric)135  0.673060   0.183000   3.678 0.000252 ***
## factor(code_numeric)136  0.318107   0.115146   2.763 0.005874 ** 
## factor(code_numeric)137  0.673800   0.185087   3.640 0.000291 ***
## factor(code_numeric)140  0.253155   0.123030   2.058 0.039968 *  
## factor(code_numeric)141  0.477834   0.203031   2.354 0.018856 *  
## factor(code_numeric)142  0.341313   0.121621   2.806 0.005141 ** 
## factor(code_numeric)144  0.375525   0.123661   3.037 0.002475 ** 
## factor(code_numeric)145  0.413724   0.108475   3.814 0.000148 ***
## factor(code_numeric)147  0.512661   0.122242   4.194 3.07e-05 ***
## factor(code_numeric)148  0.530075   0.151003   3.510 0.000474 ***
## factor(code_numeric)150  0.490848   0.145648   3.370 0.000790 ***
## factor(code_numeric)151  0.290133   0.118858   2.441 0.014878 *  
## factor(code_numeric)153  0.173212   0.114921   1.507 0.132176    
## factor(code_numeric)155  0.009336   0.114053   0.082 0.934784    
## factor(code_numeric)160  0.319616   0.110995   2.880 0.004096 ** 
## factor(code_numeric)162  0.247927   0.162397   1.527 0.127265    
## factor(code_numeric)165  0.125936   0.112631   1.118 0.263873    
## factor(code_numeric)166  0.453163   0.120692   3.755 0.000187 ***
## factor(code_numeric)168  0.388228   0.126283   3.074 0.002187 ** 
## factor(code_numeric)170  0.645564   0.225486   2.863 0.004314 ** 
## factor(code_numeric)171  0.591186   0.235737   2.508 0.012359 *  
## factor(code_numeric)172  0.664599   0.190596   3.487 0.000517 ***
## factor(code_numeric)174  0.291291   0.160047   1.820 0.069154 .  
## factor(code_numeric)175  0.051675   0.111336   0.464 0.642687    
## factor(code_numeric)176  0.027898   0.109727   0.254 0.799373    
## factor(code_numeric)177  0.054677   0.108566   0.504 0.614668    
## factor(code_numeric)178  0.370369   0.105485   3.511 0.000473 ***
## factor(code_numeric)182  0.599432   0.151349   3.961 8.19e-05 ***
## factor(code_numeric)183  0.133137   0.125698   1.059 0.289860    
## factor(code_numeric)184  0.391082   0.121874   3.209 0.001389 ** 
## factor(code_numeric)186  0.359565   0.135055   2.662 0.007926 ** 
## factor(code_numeric)187  0.113755   0.132925   0.856 0.392392    
## factor(code_numeric)188  0.065677   0.127692   0.514 0.607167    
## factor(code_numeric)189  0.192374   0.207868   0.925 0.355023    
## factor(code_numeric)191  0.517016   0.145189   3.561 0.000393 ***
## factor(code_numeric)192  0.670964   0.201181   3.335 0.000895 ***
## factor(code_numeric)195  0.520239   0.149799   3.473 0.000544 ***
## factor(code_numeric)196  0.566123   0.154300   3.669 0.000261 ***
## factor(code_numeric)197 -0.089423   0.199570  -0.448 0.654225    
## factor(code_numeric)203  0.111615   0.207584   0.538 0.590955    
## factor(code_numeric)208  0.430353   0.145106   2.966 0.003115 ** 
## factor(code_numeric)209  0.011614   0.116349   0.100 0.920514    
## factor(code_numeric)210  0.194566   0.110077   1.768 0.077545 .  
## factor(code_numeric)211  0.194139   0.113144   1.716 0.086603 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1809 on 747 degrees of freedom
## Multiple R-Squared: 0.7938,  Adjusted R-squared: 0.7543 
## Wald test: 20.12 on 143 and 747 DF,  p-value: < 2.2e-16

8.9 IV with felm

# note the difference in the instrumental variable list.
summary(felm(freedom_house ~ lag_freedom_house | year_numeric + code_numeric | 
               (lag_log_gdp_pc ~ lag2_nsave) | code_numeric, data = ajry_df))
## 
## Call:
##    felm(formula = freedom_house ~ lag_freedom_house | year_numeric +      code_numeric | (lag_log_gdp_pc ~ lag2_nsave) | code_numeric,      data = ajry_df) 
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.67752 -0.07606 -0.00234  0.08544  0.59979 
## 
## Coefficients:
##                       Estimate Cluster s.e. t value Pr(>|t|)    
## lag_freedom_house      0.36291      0.05167   7.024 1.01e-10 ***
## `lag_log_gdp_pc(fit)` -0.02049      0.07463  -0.275    0.784    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1809 on 747 degrees of freedom
##   (478 observations deleted due to missingness)
## Multiple R-squared(full model): 0.7938   Adjusted R-squared: 0.7543 
## Multiple R-squared(proj model): 0.1264   Adjusted R-squared: -0.04086 
## F-statistic(full model, *iid*):20.12 on 143 and 747 DF, p-value: < 2.2e-16 
## F-statistic(proj model): 25.54 on 2 and 133 DF, p-value: 4.101e-10 
## F-statistic(endog. vars):0.07541 on 1 and 133 DF, p-value: 0.784